2-rainbow domination in generalized Petersen graphs P(n, 3)

نویسنده

  • Guangjun Xu
چکیده

Assume we have a set of k colors and we assign an arbitrary subset of these colors to each vertex of a graph G. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this assignment is called a k-rainbow dominating function of G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G, is called the k-rainbow domination number of G. B. Brešar and T.K. Šumenjak [On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394–2400] showed that d 4n 5 e ≤ γr2(P(n, k)) ≤ n for any generalized Petersen graph P(n, k), where n and k are relatively prime numbers. And they proposed the question: Is γr2(P(n, 3)) = n for all n ≥ 7 where n is not divisible by 3? In this note, we show that γr2(P(n, 3)) ≤ n − 1 for all n ≥ 13. Moreover, we show that γr2(P(n, 3)) ≤ n − b n 8 c + β , where β = 0 for n ≡ 0, 2, 4, 5, 6, 7, 13, 14, 15 (mod 16) and β = 1 for n ≡ 1, 3, 8, 9, 10, 11, 12 (mod 16). © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the 2-rainbow domination in graphs

The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...

متن کامل

The 2-rainbow bondage number in generalized Petersen graphs

Abstract: A 2-rainbow domination function of a graph G = (V, E) is a function f mapping each vertex v to a subset of {1, 2} such that ⋃ u∈N(v) f (u) = {1, 2} when f (v) = �, where N(v) is the open neighborhood of v. The weight of f is denoted by wf (G) = ∑ v∈V �f (v)�. The 2-rainbow domination number, denoted by r2(G), is the smallest wf (G) among all 2-rainbow domination functions f of G. The ...

متن کامل

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P (n, 2)

Let G = (V, E) be a graph. A function f : V → {−1,+1} defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, γ t (G), is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen...

متن کامل

Roman domination number of Generalized Petersen Graphs P(n, 2)

A Roman domination function on a graph G = (V,E) is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman domination function f is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2009